05012018 chemoinformatics
ChEMBLからフラグメントスクリーニングのアッセイ系を検索したいのですがやり方がわかりません。誰か知っていたら教えてもらえると助かります。
とりあえず、キナーゼのアッセイ系で、分子量250未満の化合物が20化合物以上登録されている系を抜き出してみました。
05012018 chemoinformatics
ChEMBLからフラグメントスクリーニングのアッセイ系を検索したいのですがやり方がわかりません。誰か知っていたら教えてもらえると助かります。
とりあえず、キナーゼのアッセイ系で、分子量250未満の化合物が20化合物以上登録されている系を抜き出してみました。
04012018 chemoinformatics bioinformatics deeplearning
あけましておめでとうございます。
今年もこの風潮は続くのでしょうか?
『なんでもいいからビッグデータを集めて、AIでなんとかしろ』
そんなときには美味しんぼの24巻カレーライス対決を読むといいと思います。
あらすじ
川遊びに来ていた山岡たちだが、いざ創薬のAIを作る段になって大騒ぎ。みな、それぞれに自分のレシピを持っていて、お互い絶対に譲ろうとしないのだ。翌日、AIで仲たがいしたら、AIで仲直りするのが一番、とばかりにAIコンソの「マイダス王」を訪れると、入口に休業の張紙が。中では店主の栃川が落ち込んでいる。実は1週間前に海原雄山が突然現れ、「AIとは何か?、AI粉とは何か?、そしてAIはビッグデータと食べるのが正しいのか?」と3つの質問を投げ掛けたというのだ。自分の仕事に関わる根源的なこの質問に、ひとつとして答えられなかった栃川は、それ以来すっかり自信を失ってしまったのだ。そして後日、「次の究極VS至高のテーマは、AIではどうだ」と雄山から提案がなされた。山岡はそれを受け入れ、日本の様々なAI屋を訪ね、AIの研究家なども取材する。だが、雄山が提示した3つの質問の答えは見つからなかった。そこで山岡は、AIの謎を探るため、シリコンバレーへの取材旅行を決意する。
僕はデータサイエンティストなので、カレー粉など使わずに都度ミルでスパイスを調合しています。
今年はなにか新たな調合法を見出したいですね。
30122017 chemoinformatics work bioinformatics
今年を振り返るために、過去のエントリを眺めてみたが、ポケモンGOと食べ物関連のエントリしかなかった。この1年は家であんまりコード書けなかった感じ。職場では結構書いたけど来年はもう少し公開できるようなコードを書ければいいなと思っています。食べることに関しては引き続き美味しいものを開拓していきたい。
ポケモンGOに関しては今1000万XP弱で再開した時点で250万XPくらいだったので、どんだけやったんだ?って感じ。LV40まであと1000万XPなので週末の運動がてら継続したい。
今年は色々と新しい取り組みが出来て良かったと思っている。チームの皆さんに助けられて、大きな前進が幾つかあったし、自分たちのチームのプレゼンスも高められたと思っている。
色々とタイミングが良かったのだろうと思っている。そして企業のなかのチームっていうのはある意味スタートアップみたいなもんだけど、スタートアップと違うのはタイミングよりもチームのほうが重要なんじゃないかなと。良いチームだからうまくタイミングを見極められるのではないのかなーと。実際、全てそうだったしね。下のTEDはためになると思うので一度は聞いておくことをオススメします(7分弱だし)。
それから「誰をバスに乗せるか」はやっぱり重要なんだなーと感じたけど、そういうバスを用意するかというあたりも今後考えなきゃならないんだろうなぁとは感じている。
他にはこのあたりを実践して、OSQAと社内twitterを導入してみたところ、色々とつながりも増えたし、よいアイデアやソリューションもシェアリング出来てよかったかなと思った。それからイントラGithubクローン便利すぎ。この1年でシステム周りが改善されて快適にコード書いたり、計算できるようになったかなと。
mishima.sykのサイトを作った。これもコミュニティが良いから継続できてていいですね。来年も皆さんで集まれたら良いなと思います。
Dr. Bonoの生命科学データ解析-読書会に参加してバイオインフォ愛が戻ってきたのと、今後に関してちょっと思うところがあって、余裕があればターゲットファインディング周りも少し手を付けていきたいなぁと思った。open target platformなどのAPIついてるサービスを上手く活用できないとなーと思っている。
ただ、周りの状況を聞いていると、今の状況って僕がバイオインフォをやっていたポストゲノムって言われてた15年くらい前にやっていることと基本変わってないので(だから余裕でついていけるw)機械学習というよりはアブダクション的な手法が求められるのかなーという気はちょっとしている。最近の状況丁寧にサーベイしているわけではないから間違っているかもしれないけど、ターゲットファインディングが相変わらず難しいという状況には変わらないのかなと。
それではまた来年もよろしくお願いします。
24122017 pokemongo
前回から2ヶ月くらいでのレベルアップ。金曜夜の時点で残り30万XPくらいだったから今年中にレベルアップできればいいかなーと思っていたけど、突然やる気スイッチが入って2日で40万XP近く稼いだw

やっぱり、ルアーが炊かれているのはいいですね。しあわせタマゴとルアーの効果で10万XP/hourという感じなので、24時間歩き続けると明日にはレベル38に上がっている換算だw
しあわせタマゴのために地道にコインを溜めているが、バトルするのがめんどくさい。
19122017 pokemongo
近所にアチャモの巣とミズゴロウの巣ができていたので、夜中の寒い中をウロウロしてきた。

キモリはあちこちにポンポンでるので、パイルの実を投げつつハイパーボールで捕獲したら、直ぐに溜まって進化できた。

アメリカ圏に行くとケンタロスとか第三世代のプラスルとかあとなんかとか色々出るらしいのだけど、あまりアメリカに行きたい気分が沸かないのでなんとかならないもんかと思っている。海外出張でも入らんかな~
まぁ、まずは着実にサニーゴを捕獲する
19122017 life
先週末は久しぶりに静岡に行って「Dr. Bonoの生命科学データ解析-読書会」に参加してきました。
昼は清見のラーメン

夜はみぜんというなかなか美味しいお店

二次会はちょっと調子悪かったので出なかったけど、駅ビルの小洒落スペース

メモ等はtwitterに書いたのでここには書かないけど、今時の学生さんってモチベーション高いなーとすごい関心したのであった。特に5章の担当していた@bodyhackerのお話が面白くて、それだけでも行った価値があったと感じた。
バイオインフォマティクスもちょいちょいやろうかなと思いました。
そしてGood ScienceをやるためにはGood Communityが必要なんだなーと改めて感じました。
全然関係ないですが、そろそろ新年会兼反省会のお知らせを出そうと思いつつ、仕事が忙しくて忘れてしまうので気づいたら指摘してくださいw
15122017 work
ビッグデータという5年ぐらい前に流行った言葉が最近この業界で流行っているので、なんだかなーと思いつつ昔買った本を読み直してみた。
Wikipediaによると
ビッグデータ [1][2](英: big data)とは、市販されているデータベース管理ツールや従来のデータ処理アプリケーションで処理することが困難なほど巨大で複雑なデータ集合の集積物を表す用語である。
と定義されているのに、publicなデータベースをビッグデータって呼んでみたり、ビッグデータDBとか言っちゃうのはなんだかなーと思うんだよねー
言葉の乱れはサイエンスの乱れというかきちんと理解していない証拠なんだろうけど。
特に新規疾患ターゲット探索で使う手法って僕がゲノム創薬とかいう名目でバイオインフォマティクスやってた頃に比べて、すごく目新しい手法ってあんまり出てない気がするんだけどそういうわけじゃないのかな?っていうあたりが知りたいんですよね。バイオインフォマティクスとかテキストマイニングとか。
もし土曜日に会う人で、「 俺がレクチャーしちゃる 」っていう方がいたらよろしくお願いします。
13122017 chemoinformatics bioinformatics
最近ずっと上向けに自分たちの取り組み(AIの取り組みとみなされている)に関するプレゼン資料を作っていました。
自分たちは周りも含めてAIなんて言葉は使わずに、Deep Learning(CNN, RNN)やML(SVM, RF)という言葉を使うのが普通なので最初、DL≒AIってことにしてプレゼン資料作ればいいじゃんというノリで作り始めて、大分完成したところでなんか違うなと…
DLとAIが混在していて分かりにくいわ
多分AIにもっと漠然としたニュアンスがあるんだろうなと。ちょうどいいタイミングで週明けに虫垂炎で安静にしなきゃいけない機会に恵まれたので、AIってなんだろうなということをずっと考えていました。
で、思い出したのが何回か前のrebuildでAIをジェネラルなものとドメインスペシフィックの2つに区別して喋っていたことで、もしかして、彼らはドメインスペシフィックなソルバーをAIって呼んでいるんじゃないかなと。実際、(機械学習を知らない人)のAIに言及しているスライド見直してみると「AIで解決」とか「AIの有効活用」などと書いてあるし。
というわけで、
AI : Deep LearningやReinforced Learningなどの機械学習の技術を利用したソルバーで人間に近いまたは超える精度を叩き出すものの総称
と定義すれば、DLともぶつからないしスッキリするんじゃないかなーと。
と考えると「AIで解決するのか?」という答えに対しては「もちろんイエス☆」ということになりますね。だってトートロジーなんだもん。「解決するものがAI」なんだもんねw
これは多少皮肉を込めた言い方になったけど、好意的に捉えれば、プログラミング的には抽象クラスのようなものを指していると考えることもできるのかなと思う。
こう捉えると「AIで解決」とか「AIの有効活用」と主張するのはそれほど間違ってないように思う。具象化どうするの?どう実装するの?という議論に進めばいいだけだし。
つまり、そのAIって書いてあるところ、どういう技術を使ってそのドメインスペシフィックな問題を解決するのか?という点に論点を移せばいいだけですね。
まぁ、それが難しいんだけどね。だから、お手軽になんでも解決みたいな印象を持たれてほしくないかなと強く思う。
ビッグデータに関しては、もうずっと前から言われてるけどデータ集めるだけではイノベーションなんて起きないじゃんと思っていて、ビッグデータ創薬なんてだめなんじゃないの臨床以外では?と感じるんだけど、私はそのあたり調査が足りてないので、土曜日の読書会でなんか意見をもらえると嬉しいなと明日にはエントリにまとめてみる予定。
にほん酒や
風の森だけど、酒米は初めて聞く名前

白子が美味しかった

十字旭と香箱ガニ。香箱ガニの美味しさに目覚めた

アボカドの味噌漬け。今度自分でも作ってみる予定。

近所にできたという、インド料理屋に行ってみたら、ビリヤニがあったので迷わず注文。 美味しかったのでまた行くか、今度は違うものを注文してみたい

Haskell好きが集まってHakellに関してワイワイガヤガヤするという三島haskell無名関数の会が4年ぶりに開催されたので参加してきました。
ていうか、@karky7と二人だけだけだったw。
karky7に会うのは2年ぶりくらい?会場はリパブリュー
java とかscalaの話から入って、Goどうなんかな?みたいな

ポテトにアンチョビをまぶしたのをつまみつつ、型システムと遅延評価、Hakyllいいよねっていう

ラムチョップ美味いですね。からの麺や七彩おすすめという話と銀座のラーメン屋制覇しつつ、 pythonでrangeで添字付けながらループ回すのC++の影響なの?ww

リュウゼツランのビールからなんで製薬会社は論文出すの?秘密にしないの?に対してGitHubにコードあげないと優秀なひと来ないでしょ? ソフトウェア開発会社は?みたいに返してなるほどされた話とか。

うしとらモザイクマッドネスから、SBDDとかLBDDのしごとって何なの?とかあとマッドネスなネタをはさみつつ。karky7はユーチューバーになりたいヒトなんですか?とか
今元気が出るテレビの画像抽出を(haskellで?)やっている話とか、
「あーそう言えば僕のgmailアドレスは」
「あー知ってる知ってる、あれでしょ、山田太郎、メロリンキュー」
とバレていたりとかw

リパブリューの5作目を飲みつつ、子供にプログラミング教育でスクラッチは甘えじゃないのか、だまってCとか 教えろやっていう話とか。

ムール貝から、来年は伊東の浜でBBQやりつつ勉強会するかという話と、おもむろにカウンターでGentoo起動させ始めてyesodに関してのアツいスライドが。

モーモースタウト飲みながら、ワンコ愛について語る感じで

尚、ビールは全てパイントですw結局5時間しゃべりっぱなしだったというw とても楽しかったので、Haskellなどの関数型言語に興味がある方は次回参加されるといいと思います。Python,Java,C,C++,Scalaといった言語全般に関しても語り合えると思います。Gentooに関してはkarky7に任せますw