18062018 chemoinformatics FMO MD
最近MDと従来のQSARテクニックを組み合わせた手法が提案されていますね。
アプローチとしては静的な状態である三次元構造に動的な情報を付与させるために10ns-20ns程度の短いMDをかけてからサンプリングして、従来の3D-QSARの記述子を計算してMEAN,MEDIAN,SDを取るという方法です。
5th Autumn School of Chemoinformatics in Nara, 2017ではThierry Langer先生がDynamic Pharmacophores: A New Way to Enhance Virtual Screening Screening Efficacy in Early Drug Discoveryということで、ファーマコフォアモデリングでアンサンブルをとっていた。
11th ICCSではShuzhe Wangの発表したMolecular Dynamics Fingerprints (MDFP): Combining MD and Machine Learning to Predict Physicochemical Propertiesというポスターは独自記述子を定義していて興味深かったし、Fourches, DenisのNext-Generation MD-QSAR Models of Dynamic Kinase-Inhibitor Interactions Based on Machine Learning and Molecular Dynamicsは3D-WHIMの拡張で大変すごかった。特にMDを使うことでactivity cliffの解釈ができていたという点に非常に感銘を覚えた。activity cliffは単純にリガンドからの類似性っていう人間主観のアプローチがもたらすミスマッチだからそれをきちんと説明できるのは本当にすごいと思います(立体障害じゃないやつを)。
このようなアプローチではMDを計算してサンプリングしたあとに、どういう計算で静的な状態を記述するかというのが重要なのだと思いますが、勘のいいあなたはもう既におわかりのように、既にFMOを組み合わせた手法が提案されています。この手法はかなりプロミッシングではないかなーと感じています。なぜかわからないヒトは「すごいよFMO!」を10回くらい読み直しましょう。
そもそも、QM/MMやらんでMDでサンプリングして力場よりずっと精度のいいFMO計算なんかして順番が逆なんじゃないの?とか思っていたが、実際やってみると精度出そうだし不思議だなーと思っていたのだけど、さっきシャワーを浴びていたらなんとなく理解して嬉しくなったのでちょっとエントリーをこしらえてみました。
それぞれの演題には既にペーパーでているのが多いので興味があったら追いかけるといいと思います。
CRC Press / ?円 ( 2009-05-14 )