21 06 2016 chemoinformatics deeplearning Tweet
先日Deep Learning創薬の駄文をのせてみたが、
深いニューラルネットワークで特徴抽出っていうのが、chemoinformaticsの文脈だと「フラグメントからファーマコフフォア構築」というのはその通りだと思うんだけど、それがBoW的なECFP4みたいなフィンガープリントでいいのだろうか?pharmacophoreとかCoMFA,CoMSIAみたいな表現に向かうような記述子で出発しないといけないんじゃないかなーと思う
以前@iwatobipenが触れていたNeuralFingerPrintもECFPの特徴抽出プロセスと類似の方法で距離を考慮してないからファーマコフォアにはいたらないと思う。精度がいいのは分散表現のところではないかなぁと思っている(つまり以下の説明)。
Standard fingerprints encode each possible fragment completely distinctly, with no notion of similarity between fragments. In contrast, each feature of a neural graph fingerprint can be activated by similar but distinct molecular fragments, making the feature representation more meaningful.
実際溶解性みたいな分子全体の特徴が重要な場合の予測は非常に改善されているが、薬理活性みたいな分子認識が重要なファクターになっているものはあんまり改善してないように思う。GitHubに実装があるし、精度もいいから予測モデル作る場合にはこれを使うけどね。
ここらへんも似た感じだと思う。如何にもトキシコフォアとかファーマコフォアが学習されるようなFigureが載ってるけど、Catalystとか使ってファーマコフォアモデルを組み立てたり、ドッキングシミュレーションをやりまくった経験からはこれは誤解されそうな説明だなぁと思った。
で本題。最近Molecular Graph Convolutions: Moving Beyond Fingerprintsという意欲作を読んで感動した。
ここまで書いたら中身の説明を書くのに疲れちゃったので興味のある方は是非読みましょう。著者もGoogleとStanfordの人だし、pubmedで出てこなかったらノーマークだったわ。
化合物(グラフとしての)の不変性を獲得するようなCNNのやり方参考になったがプーリングがsumっていうのがそれでいいのかなぁと思った。
f is a learned linear operator with a rectified linear activation function and g is a sum.
ファーマコフォアが記述できるようなDNNの方法ができれば、精度上がるだろうから、測定データさえ増やせるのなら有望じゃないかと思う。
さらにその結果からドッキングシミュレーションの評価関数を作れるだろうから、それを使ってリードホッピングにトライしてもいいから夢が広がる。
ドッキングの精度が高ければモデルでFMO実行してもそれなりに正しそうな結果が出るだろうから、結晶に頼らなくてもモデリングでいけそうだしな。