01 06 2016 chemoinformatics deeplearning Tweet
slideもあったけど肝心な部分が抜けているので動画を見たほうが面白いです。
10分ぐらい
部分構造の高次表現としてpharmacophoreとして記述されるみたいな感じのスライドがあったけどpharmacophoreは特徴間の距離が非常に重要なのでBoW的な特徴ベクトルでは表現出来ないと思う。n-gram的な考え方を取り入れないと難しいと思っている。でもそれって5-10word離れている単語の関係を評価していくってことだからコスト高なんだよね
22分くらい
chemoinformaticsで目玉焼き
深いニューラルネットワークで特徴抽出っていうのが、chemoinformaticsの文脈だと「フラグメントからファーマコフフォア構築」というのはその通りだと思うんだけど、それがBoW的なECFP4みたいなフィンガープリントでいいのだろうか?pharmacophoreとかCoMFA,CoMSIAみたいな表現に向かうような記述子で出発しないといけないんじゃないかなーと思う。
あとタンパク質とリガンドの相互作用、特に電荷の移動という特徴を持たせられないのも今の記述子の問題ではあると思う。
画像認識と分子認識は色々違うからね。