23 03 2019 chemoinformatics Tweet
ちょっと質問されたので、py4chemoinformaticsの説明追加してみたんだけど自分の中で問題が整理されて良かった。
結局acivity cliffとかmagic methylってのはApplicability domainの問題ではなくて、特徴量の抽出のほうの問題なんですよね。グラフ類似性が実際の三次元の構造の類似性とは微妙に違うし、結合モードの類似性とかとも異なるのに、その類似性が活性の類似性と相関するという仮説そのものが正しくない可能性があるということを認識した上でモデルを作らんといかんよなと再認識させられた。
尚、CoMFAはぶつかって活性消失したという事実がないとモデリングできないし、ファーマコフォアの排除体積も同様。ドッキングのスコア関数はそれっぽい特徴表現だけど、粗すぎてネガティブスクリーニングにしか使えんけど、ファーマコフォア表現ってのが特徴量としては一番しっくりくるかなと言ったところ。