11 12 2016 chemoinformatics tensorflow Tweet
Mishima.sykに参加された皆様お疲れ様でした。深層学習のフレームワークのハンズオン如何でしたでしょうか?次回に何をやるかは未定ですが、反省会という名の(新年会?忘年会?)でテーマに関して話し合う予定なので興味ある内容があれば私まで伝えてもらえるとありがたいです。
僕はkerasを触ったことがなかったので、一通り学べて助かりました。tf.contribe.learnはできるだけ何も考えなくていいように作っているのに対してkerasはもうちょっと構築の仕組みを楽にする感じのフレームワークかなぁと。tflearn](https://github.com/tflearn/tflearn)と似たものを感じた。
尚、当日の資料とデータはGitHubにあるので必要に応じてダウンロードするなり好きに使ってください。尚slideshareを使わないのは今の職場が何故かブロックしているからですw
ここからは、最近ちょっと考えていることをだらっと書いておきます。
その昔(というか今も)CADD(Computer Aided Drug Design)という言葉はあるのだが、あれはコンピューターを利用して解析をするオペレーター(モデラーともいう)のヒトと、実際に合成するケミストがいるので、主観のぶつかり合いというか、お互いの経験による解釈の違いというのが起こりやすい。あとは精度がそんなに良くないので確度を考慮しながら結果を解釈する必要があったりして色々面倒事が多い。
最近、DeepLearningのようなそこそこ精度の高い手法を淡々と自動的に構造最適化プロジェクトに適用するような環境を作ったらどういうことが起こるのだろうか?というあたりに興味が湧いている。機械学習はヒトの解釈の余地が入らないので淡々と受け止めるしかなく、それをどう使うかというのはどちらかというとケミストに委ねられるようになるし、モデラーにとってもそれ以上の何かを出さないと存在価値がないという状況になるのかなーとか思ったり。
将棋ウォーズで常に棋神がガイドしてくれる感じに近いのかなぁ。